БИОХИМИЯ

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ТЕМА 1. ВВЕДЕНИЕ. ПРЕДМЕТ БИОХ...
   1. Отличия живой природы от...
   2. Основные разделы биохими...
   3. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗА...
ТЕМА 1А. ХИМИЧЕСКИЙ СОСТАВ ОРГ...
   1. Химический состав живых ...
   2. Виды химических связей
      2.1. Ковалентные связи
      2.2. Дисульфидные связи
      2.3. Ионная связь
      2.4. Водородная связь
      2.5. Гидрофобные взаимод...
      2.6. Ван-дер-ваальсовые ...
   3. Классификация органическ...
      3.1. Функциональная груп...
   4. Структурная иерархия в м...
   5. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗА...
ТЕМА 2. УГЛЕВОДЫ
   1. Биологическая роль углев...
   2. Классификация углеводов
      2.1. Моносахариды
         2.1.1. Глюкоза и фрук...
         2.1.2. Циклическая фо...
         2.1.3. Аминосахара
         2.1.4. Рибоза и дезок...
         2.1.5. Глицериновый а...
      2.2. Олигосахариды
         2.2.1. Сахароза
         2.2.2. Мальтоза
         2.2.3. Лактоза
      2.3. Полисахариды
         2.3.1. Гомополисахари...
         2.3.2. Гетерополисаха...
   3. Норма углеводов в питани...
   4. Переваривание углеводов ...
      4.1. Регуляция уровня гл...
   5. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗА...
Тема 3. ЛИПИДЫ
   1. Биологическая роль липид...
   2. Классификация жиров
      2.1. Простые жиры
         2.1.1. Глицериды (ней...
         2.1.2. Воска
      2.2. Сложные жиры
         2.2.1. Фосфолипиды
         2.2.2. Кликолипиды
         2.2.3. Стероиды
   3. Переваривание жиров в же...
   4. Основные виды патологии ...
   5. Норма жиров в питании, о...
   6. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗА...
ТЕМА 4. БЕЛКИ
   1. СТРОЕНИЕ БЕЛКОВ
   2. БИОЛОГИЧЕСКИЕ ФУНКЦИИ БЕ...
   3. КЛАССИФИКАЦИЯ БЕЛКОВ
      3.1. ПРОСТЫЕ БЕЛКИ
         3.1.1. Глобулярные бе...
         3.1.2. Фибриллярные р...
         3.1.3. Фибриллярные н...
      3.2. СЛОЖНЫЕ БЕЛКИ
         3.2.1. Фосфопротеиды
         3.2.2. Нуклеопротеиды
         3.2.3. Хромопротеиды
         3.2.4. Гликопротеиды
         3.2.5. Металлопротеид...
         3.2.6. Липопротеиды
   4. СТРОЕНИЕ И ФУНКЦИИ АМИНО...
      4.1. Классификация амино...
   5. УРОВНИ ОРГАНИЗАЦИИ БЕЛКО...
      5.1. Первичная структура
      5.2. Вторичная структура
      5.3. Третичная структура
      5.4. Четвертичная структ...
   6. ДЕНАТУРАЦИЯ БЕЛКОВ
   7. ПЕРЕВАРИВАНИЕ БЕЛКОВ В Ж...
   8. БЕЛКОВОЕ ПИТАНИЕ
   9. КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗА...
ТЕМА 5. БИОКАТАЛИЗ
ТЕМА 5А. ФЕРМЕНТЫ
   1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ И БИ...
      1.1. Отличие ферментов о...
   2. ХИМИЧЕСКАЯ КИНЕТИКА
   3. СТРОЕНИЕ ФЕРМЕНТОВ
   4. МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕН...
   5. АКТИВАТОРЫ И ИНГИБИТОРЫ
      5.1. Активаторы
      5.2. Ингибиторы
   6. СВОЙСТВА ФЕРМЕНТОВ
      6.1. Термолабильность
      6.2. Зависимость скорост...
      6.3. Зависимость активно...
      6.4. Специфичность
         6.4.1. Абсолютная спе...
         6.4.2. Относительная ...
   7. НОМЕНКЛАТУРА ФЕРМЕНТОВ
   8. КЛАСИФИКАЦИЯ ФЕРМЕНТОВ И...
      I. Оксидоредуктазы
      II. Трансферазы
      III. Гидролазы
      IV. Лиазы
      V. Изомеразы
      VI. Лигазы
   9. ЛОКАЛИЗАЦИЯ ФЕРМЕНТОВ В ...
   10. КОНТРОЛЬНЫЕ ВОПРОСЫ
ТЕМА 5Б. ВИТАМИНЫ
   1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ И БИ...
      1.1. Основные признаки в...
      1.2. Причины истощения з...
   2. КЛАССИФИКАЦИЯ ВИТАМИНОВ
      2.1. Водорастворимые вит...
      2.2. Жирорастворимые вит...
   3. БИОЛОГИЧЕСКАЯ РОЛЬ
   4. Контрольные вопросы

6.4.2. Относительная специфичность

Ферменты, обладающие относительной специфичностью, ускоряют реакции, характерные для определенных типов химических связей в молекулах различных веществ одного класса. Например, пищеварительный фермент пепсин ускоряет гидролиз пептидных связей, образованных при участии циклических аминокислот, в любых белках; липаза - гидролиз сложноэфирных связей глицеридов, образованных любыми жирными кислотами.

По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента (Рис. 7.).

В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой "перчатка - рука". При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки. Гипотеза Кошланда, основанная на допущении гибкости активного центра фермента, удовлетворительно объясняла активирование и ингибирование действия ферментов и регуляцию их активности при воздействии различных факторов. В частности, конформационные перестройки в ферменте в процессе изменения его активности Кошланд сравнивал с колебаниями паутины, когда в нее попала добыча (субстрат), подчеркивая этим крайнюю лабильность структуры фермента в процессе каталитического акта (Рис. 7.):

Рис.7. Модели взаимодействия фермента с субстратом: а) - модель "жесткой матрицы" по Э.Фишеру; б) - модель "перчатка - рука" по Д.Кошланду.

В настоящее время гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

Биолого-химический факультет УдГУ
Кафедра анатомии физиологии человека и животных
c 2003 к.б.н. Мадера Е.А.

Powered by swift.engine.edu
c 2003 MITTEC